Numerical Simulation Study on a Passive Jet Flow Control Method to Suppress Unsteady Vortex Shedding from a Circular Cylinder

نویسندگان

  • Wenli Chen
  • Xiangjun Wang
  • Feng Xu
  • Hui Li
  • Hui Hu
چکیده

A passive jet flow control method for suppressing unsteady vortex shedding from a circular cylinder via a numerical simulation is presented in this paper. The circular cylinder is wrapped in a hollow pipe. There are a set of the suction/jet holes on the windward side and leeward side of the outer surface of the pipe. The oncoming flow enters into the hollow pipe through the inlet holes and then blows out from the outlet holes. As a result, the vortex shedding alternately in the wake behind the circular cylinder will be suppressed or destroyed. The reliability of the numerical model without control is first verified by comparison with previous research results. Next, the control effectiveness of this method for the pressure distribution, aerodynamic forces and flow characteristics are discussed for a large range of Reynolds number, Re = 10 to 10. The results indicate that the proposed control method has a remarkable effect on the aerodynamic forces on the circular cylinder with high Reynolds number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Unsteady Vortex Shedding from a Circular Cylinder by Using a Passive Jet Flow Control Method

A passive jet flow control method was employed to suppress the unsteady vortex shedding from a circular cylinder at the Reynolds number level of Re= (0.18~1.1)×10. The passive jet flow control was achieved by blowing jets from the holes near the rear stagnation point of the cylinder, which are connected to the in-take holes located near the front stagnation point through channels embedded insid...

متن کامل

Thermal Field Around a Circular Cylinder with Periodic Vortex Shedding

A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...

متن کامل

Effects Of Frequency Variation At Inlet Flow On The Vortex Shedding Frequency Behind A Circular Cylinder

In many applications the flow that past bluff bodies has frequency nature (oscillated) and it is not uniform. This kind of flow has effects on the formation of vortex shedding behind bluff bodies. In this paper the flow around a circular cylinder was numerically simulated. The effects of frequency variation at inlet flow on the vortex shedding frequency were investigated. The transient Two-Dime...

متن کامل

Simulation of Premixed Combustion Flow around Circular Cylinder using Hybrid Random Vortex

This research describes the unsteady two-dimensional reacting flows around a circular cylinder. The numerical solution combines the random vortex method for incompressible two-dimensional viscous fluid flow with a Simple Line Interface Calculation (SLIC) algorithm for the propagation of flame interface. To simplify the governing equations, two fundamental assumptions namely Low Mach Number and ...

متن کامل

Passive jet control of flow around a circular cylinder

and suppressing fluctuating amplitude of the dynamic wind loads acting on the test model. With 24 suction/jet holes evenly distributed over the cylindrical test model (i.e., the N13 design of the present study), the passive jet control method was found to be able to achieve up to 33.7 % in drag reduction and 90.6 % in fluctuating wind loading suppression, in comparison with the baseline case. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015